
September 1998 The Delphi Magazine 47

Surviving Client/Server:
ODBMS in Practice, Part 2
by Steve Troxell

Back in July, we started looking
into the Jasmine object

oriented database system from
Computer Associates. In that issue
we went through the motions of
defining class structures and meth-
ods, and basically made ourselves
familiar with the world of object
databases. Having got a feel for
how we would set up a database in
object-land, let’s now turn our
attention to accessing that data-
base from a Delphi application.

My apologies for making you
wait an extra month for this
follow-up. The pressures of a major
release for our company’s product
interrupted my research into
Jasmine. Since the Editor has
already asked me to pay for his
increased medical insurance pre-
miums from the heart attack I gave
him, I’d better make good with this
issue.

Before we start, let me say again
that this is not intended to be a
product review nor a tutorial for
the Jasmine system. My goal here
is to show you what it’s like from a
programmer’s point of view to use
an object oriented database, using
Jasmine as the guinea pig platform.

Into The Breach
As you will find with most ODBMS
systems, the Jasmine API you’ll
need to talk to the database from
Delphi is provided in the form of an
ActiveX control. There is nothing
special about installing the ActiveX
control, at least as far as installing
any ActiveX control is special. The
TJasmine control is installed on the
component palette on the ActiveX
page. You drop this visual control
on a form in your project. The TJas-
mine control takes the form of a
button which, when clicked at run-
time, establishes the connection to
a Jasmine database. Normally, you
would set the Visible property of
this control to False to hide it at

runtime and simply connect to the
database by calling the Connect
method in code.

Reading The Class Hierarchy
One of the most basic things we
could do from a client application
is obtain a list of the classes
(tables). Remember that Jasmine
organizes a set of related classes
into a class family; similar to how
we might organize a set of related
tables into a database. Figure 1
shows the Jasmine class browser’s
view of the CAStore class family.
Since classes can inherit their base
structure from other classes, this
illustration clearly shows the class
hierarchy.

How would we get this same
information in our application?
The TJasmine control provides a
method called ClassFamilyFrom-
Name which returns a ClassFamily
object, from which we can get
details about the class family.
Actually, what is returned is an
OLE interface, IClassFamily, but
from a coding standpoint, we can
treat as an object.

ClassFamily itself has a property
called Classes, which is a collec-
tion of objects for each class in the
class family. Each item in the
Classes collection is a Class object
which gives us a few details about
the class’s metadata. As Listing 1
shows, we can loop through the
ClassFamily.Classes collection and
see all the classes available to us (I
don’t think I’ve ever in my life writ-
ten a paragraph with more uses of
the word “class”).

Notice that the Classes collec-
tion is one-dimensional and
doesn’t really reflect the hierarchy
of the class family as it’s shown in
Figure 1. Most of the time this is
fine since we don’t really need to
know a class’s ancestry just to see
if the class itself exists. However,
we can get to the ancestry

information if we wanted to. The
objects in the Classes collection
contain a SubClasses property
which is a collection of all the sub-
classes of the current class.

But we don’t want to just take
our existing code in Listing 1 and
list the subclasses of each class as
we come to it. That would make a
wildly redundant list since every
class would be listed twice: once in
the main list we already have, and
then again when it is listed as a
subclass under its ancestor class.
What we want is an indented out-
line like that shown in Figure 1. To
do that we need to know what the
‘root’ class is. In the CAStore class
family, all classes descend from
CAComposite. So what we need to do
is identify the ‘root’ class of the
class family (CAComposite) and then
list all of its subclasses. As we hit
each subclass, we want to list all of
its subclasses, and so on;
recursively unwinding the class
hierarchy.

So how do we find the ‘root’
class? Fortunately, the ClassFamily

procedure ShowClasses;
var
CF: OleVariant;
I: Integer;

begin
CF :=
Jasmine1.ClassFamilyFromName(
'CAStore');

WriteLn('Class Family: ' +
CF.Name);

WriteLn('Classes: ');
for I := 1 to CF.Classes.Count do
WriteLn(Format(' %s',
[CF.Classes[I].Name);

end;

output:
Class Family: CAStore
Classes:
Accessory
ActivationObject
ActiveObject
Background
Belt
Boutique
...
Shirt
Shoes
Skirt
Sounds
Suit
Supplier
Top

➤ Listing 1

48 The Delphi Magazine Issue 37

object gives us a collection called
TopClasses which is a collection of
all the top-level classes in the
family (there is no particular
reason to assume there would only
be one top-level class, although
that would make sense in most
designs). In effect, the TopClasses
collection is a subset of the Classes
collection, where Classes contains
all classes in the family, and
TopClasses contains only those
having no ancestor class defined in
the family (their ancestor class, or
superclass, would be the Jasmine
system class Composite).

Listing 2 shows how we would
use the TopClasses collection and
recurse through the SubClasses
collections to get a hierarchical
view of the class family like that
shown in Figure 1.

Not only can we use these class
collections to get the names and
organization of the classes, we can
also get metadata information
about the properties (columns)
and methods of each class. Listing
3 shows how we can see the
property names and datatypes as
well as the method names for the
Customer class.

Notice that there are some out of
the ordinary datatypes in this
structure. The address and
shippingaddress properties are
‘multi-valued’ properties. In this
case, an address is one or more
strings of text, like on a mailing
label, with different pieces of the
address on different lines. In this
sense, the address property acts
like the Params property of a TData-
base component: a collection of
strings.

Also notice that the creditcard
property is not a regular datatype
at all, but is an instance of type
CreditCard. This means that the
creditcard property is a direct link
to an instance in the CreditCard
class (table). When we access Cus-
tomer.creditcard, we are directly
accessing a class of type Credit-
Card (made more confusing
because the property name and its
classname are the same thing, dis-
tinguished only by the capitaliza-
tion in the classname and the lack
thereof in the property name). In

concept, this is no different than a
TEdit’s Font property being an
instance of TFont.

Retrieving Data
Everything we’ve looked at so far
has only given us metadata infor-
mation about the classes, not the
actual data within them. So how do
we do that? Just as with SQL data-
bases, where the only way to get at
the data is through an SQL query,
the only way to get at the Jasmine
data is through an ODQL (Object
Database Query Language) query.
To run such a query we use the
RunQueryExpression method. List-
ing 4 shows us how we could get
the name and address of the first
customer in the Customer class. As
we can see from our output, the
address collection of strings lists
each piece of the address on a
separate line. Not my idea of a bril-
liant database design, but we take
what we are given here.

The string we pass into Run-
QueryExpression is the ODQL query
we wish to execute. In this case we
are asking for all the Customer
instances from the Customer class.
What we get back from RunQueryEx-
pression for this query is a collec-
tion of Customer class instances, so
the OurCustomers variable repre-
sents a collection of Customer
objects. We grab the first instance
from the collection and stick it into
the FirstCustomer variable. Since
FirstCustomer is an instance of the
Customer class, we access its prop-
erties and methods like any other
class reference. So you see that we
simply refer to the name and

procedure ShowClassHierarchy;
var
CF: OleVariant;
I: Integer;
procedure ShowSubClasses(aSubClasses: OleVariant;
aIndent: Integer);

var
I: Integer;

begin
for I := 1 to aSubClasses.Count do begin
Write(StringOfChar(' ', (aIndent * 2) + 2) +
'Subclass: ' + aSubClasses.Item[I].Name);

ShowSubClasses(aSubClasses.Item[I].SubClasses,
aIndent + 1);

end;
end;

begin
CF := Jasmine1.ClassFamilyFromName('CAStore');
WriteLn('Class Family: ' + CF.Name);
for I := 1 to CF.TopClasses.Count do begin
WriteLn('Class: ' + CF.TopClasses[I].Name);
ShowSubclasses(CF.TopClasses[I].SubClasses, 0);

end;
End;

output:

Class Family: CAStore
Class: CAComposite
Subclass: ActiveObject
Subclass: Person
Subclass: Designer
Subclass: Model
Subclass: Consultant
Subclass: Customer

Subclass: BusinessData
Subclass: Currency
Subclass: Order
Subclass: OrderItem
Subclass: CreditCard

Subclass: Piece
Subclass: Accessory
Subclass: Belt
Subclass: Handbag
Subclass: Hat
Subclass: Shoes

Subclass: Cosmetics
Subclass: Eyeliner
Subclass: Lipstick
Subclass: Perfume

➤ Listing 2

➤ Figure 1

September 1998 The Delphi Magazine 49

address properties directly. Note
that property names are case-
sensitive and as the class in the
Jasmine database was defined with
lowercase property names, we
must have lowercase property
names when we reference them.

Remember the creditcard prop-
erty in Customer? It was a Customer
property that represented an
instance in the CreditCard class. So
how do we access that? We access
properties of the CreditCard class
directly, just like you would expect

procedure ShowClassStructure;
var
CF, AClass: OleVariant;
Properties, AProperty: OleVariant;
Methods: OleVariant;
I: Integer;
DataType: string;

begin
CF := Jasmine1.ClassFamilyFromName('CAStore');
AClass := CF.ClassFromName('Customer');
Properties := AClass.Properties(True, jAllProperties);
Methods := AClass.Methods(True, jAllMethods);
WriteLn('Class Family: ' + CF.Name);
WriteLn('Class: ' + AClass.Name);
WriteLn(' Properties:');
for I := 1 to Properties.Count do begin
AProperty := Properties.Item[I];
DataType := AProperty.ClassName;
if AProperty.IsSet then
DataType := 'collection of ' + DataType

else if AProperty.PropertyType = jString then
DataType := DataType + '[' +
IntToStr(AProperty.Precision) + ']';

WriteLn(Format(' %-20.20s (%s)', [AProperty.Name,
DataType]));

end;
Write(' Methods:');
for I := 1 to Methods.Count do
Write(' ' + Methods.Item[I].Name);

end;

output:

Class Family: CAStore
Class: Customer
Properties:
customernumber (Integer)
address (collection of String)
shippingaddress (collection of String)
phonenumber (String[65536])
creditcard (CreditCard)
shoesize (String[65536])
waist (String[65536])
leg (String[65536])
neck (String[65536])
hat (String[65536])
currentOrder (Order)
orders (collection of Order)
password (String[65536])
nextCustomerNumber (Integer)
thumbnail (CABitmap)
photo (CABitmap)
tag (CABitmap)
video (CAVideo)
audio (CAAudio)
name (String[65536])

Methods:
addOrder
addCustomer

procedure ShowFirstCustomer;
var
OurCustomers: OleVariant;
FirstCustomer: OleVariant;
I,J : Integer;

begin
OurCustomers := Jasmine1.RunQueryExpression(
'CAStore::Customer from CAStore::Customer');

FirstCustomer := OurCustomers.Item(1);
WriteLn(FirstCustomer.name);
for J := 1 to FirstCustomer.address.Count do
WriteLn(FirstCustomer.address.Item(J));

End;

output:
DE JAMES
163 Twisted Rd
Old Castle
WA
99910

➤ Listing 4

in an object world. Listing 5 shows
a roster of all customers and their
credit card numbers. If it so hap-
pened that one of our customers
didn’t have a credit card assigned
to them, we would detect that by
testing to see if the creditcard
property was unassigned by using
Delphi’s VarIsEmpty function.

Modifying Data
How do we change values in the
class? Just assign a new value to
the property like this:

Customer.name := ‘Joe Smith’;

The new value is immediately
saved in the database. You can
also set up transactions so that all
changes to a class instance are not
recorded in the database until you
commit the transaction.

What about adding a new
instance to the class, like SQL’s
INSERT statement? All classes
defined in Jasmine include the
system method NewObject, which
we call to create a new instance of
that class. Once a new instance is
created, we simply assign values
to the instance properties. At this
point we are simply modifying an
existing instance like we described
above. Any properties we don’t
explicitly assign a value become nil
when stored in the database
(equivalent to SQL’s null). Listing
6 shows an example.

➤ Listing 3

procedure ShowCreditCards;
var
OurCustomers: OleVariant;
Customer: OleVariant;
I : Integer;
CC: string;

begin
OurCustomers := Jasmine1.RunQueryExpression(
'CAStore::Customer from CAStore::Customer');

for I := 1 to OurCustomers.Count do begin
Customer := OurCustomers.Item(I);
CC := '';
if not VarIsEmpty(Customer.creditcard) then
CC := Format('%-11.11s %s',
[Customer.creditcard.type, Customer.creditcard.creditcardnumber]);

WriteLn(Format('%-20.20s %s', [Customer.name, CC]));
end;

end;

output:
DE JAMES Visa 7854 753 954 1300
LYDIA CHASE Discover 7854 753 954 1304
ANGELA EASA Visa 7854 753 954 1306
MARION AKERLUND Master Card 7854 753 954 1310

➤ Listing 5

50 The Delphi Magazine Issue 37

procedure CreateNewInstance;
var
AClass: OleVariant;
AInstance: OleVariant;

Begin
{ GetClassObject is a shortcut to getting the class metadata.
In Listing 3 we used ClassFamilyFromName and ClassFromName
to do the same thing. }

AClass := Jasmine1.GetClassObject('CAStore', 'Customer');
AInstance := AClass.NewObject;
AInstance.name := 'Steve Troxell';
AInstance.phonenumber := '111-555-1234';

end;

➤ Listing 6

procedure DeleteAnInstance;
var
OurCustomers: OleVariant;

begin
OurCustomers := Jasmine1.RunQueryExpression(
'CAStore::Customer from CAStore::Customer' +
'where CAStore::Customer.name == "Steve Troxell"');

for I := 1 to OurCustomers.Count do
OurCustomers.Item(I).DeleteObject;

end;

➤ Listing 7

procedure AddCustomer;
var
AClass: OleVariant;

begin
AClass := Jasmine1.GetClassObject('CAStore', 'Customer');
AClass.addCustomer(Steve Troxell', '');

end;

➤ Listing 8

By the same token, the DeleteOb-
ject method can be used to delete
an instance from a class, as shown
in Listing 7.

Calling Object Methods
The classes in our object database
can have methods tied to them.
Listing 3 shows that our Customer
class has two methods: addOrder
and addCustomer. addOrder happens
to be an instance-level method,
meaning it operates on an instance
of the class. AddCustomer happens
to be a class-level method, mean-
ing it operates independently of
any particular instance in the
class. You wouldn’t know this with-
out examining the method defini-
tions in greater detail than I’ve
shown here, so just trust me on
this one.

Calling the methods of a class is
just as transparent as accessing its
properties. Let’s start with the add-
Customer method. To call a class-
level method, we qualify the
method name with the class name.
This is similar in concept to how
we call the Create method to
instantiate any Delphi object by
qualifying it with the name of the
class we are instantiating (eg, List
:= TStringList.Create). So for our
purposes, we need to get a refer-
ence to the Customer class itself in
order to call any class-level meth-
ods. Listing 8 shows how we call
addCustomer.

Instance-level methods must be
called from an instance of the
class. We’ve already seen plenty of
examples of how we get class
instances, so Listing 9 should be
fairly straightforward. In this case,
we are passing a null value for the
single parameter. Note that the
keyword “null” we are using is the
Null predefined variant supplied
by Delphi.

Conclusion
Through the magic of OLE automa-
tion (you have been reading Dave
Jewell’s series haven’t you?) the
objects in our object database can
be more or less seamlessly
accessed within a Delphi
application. In many ways, this
may make your code considerably
easier to develop and maintain

procedure TForm1.Button15Click(Sender: TObject);
var
Customers,
Customer: OleVariant;

begin
Customers := Jasmine1.RunQueryExpression(
'CAStore::Customer from CAStore::Customer ' +
' where CAStore::Customer.name == "DE JAMES"');

Customer := Customers.Item(1);
Customer.addOrder(null);

end;

➤ Listing 9

than with traditional databases. I
can think of an endless stream of
questions this article poses. How
do you do this or that in an object
database? My purpose here was
not to illustrate every conceivable
thing you would want to do with an
object database, but rather to
show you what the basic opera-
tions would be like to give you a
taste for the technology.

One more point to bear in mind.
Obviously since we are bypassing
all the normal data access
techniques, we cannot use Delphi’s
data-aware controls without creat-
ing a custom TDataset descendant.
Now you know why I bothered to
show you how to read the meta-
data as well as the actual data.

Next Month...
Next time we meet, we’ll go back to
the world of SQL and look at a tech-
nique to add a sort of visual query
builder to an existing system. This
would allow users to define filters
for their data based on the plain
text labels and descriptions they
understand. Then we the program-
mers take on the burden of turning
that into a dynamic SQL statement
to fetch the records they are inter-
ested in.

Steve Troxell is a software
engineer with Utimate Software
Group in the USA. He can be
contacted via email at
Steve_Troxell@USGroup.com

	Into The Breach
	Reading The Class Hierarchy
	Retrieving Data
	Modifying Data
	Calling Object Methods
	Conclusion
	Next Month...

